
 

THEME ARTICLE: Memristor-Based Computing 

Enabling Full Associativity 
with Memristive Address 
Decoder 

Address decoders are typically built using regular 

logic gates. A novel Memristive Perfect Induction gate 

replaces standard NAND, allowing for storing the 

address alongside data and comparing it to the input 

address, thus transforming the address decoder into CAM and enabling fully associative 

access. Applications include fully associative TLB, cache, and virtually addressable 

memory. 

Consider a typical address decoder (see Figure 1) in which the addresses of a memory block, 
row, and column are hardwired by AND-ing either direct or inverted address bits. A memory 
block, row, and column where the address matches the hardwired pattern are selected. We sug-
gest adding a pair of memristors to each input of an address decoder in a voltage-dividing man-
ner, achieving a two-fold effect: The address pattern in each block, row, and column becomes 
programmable rather than hardwired, and a memristor pair forms a XNOR—allowing for com-
parison of the input address bit to the bit “programmed” into the memristors. These effects ena-
ble content addressability, effectively turning an address decoder into a CAM. 

A memristor pair at each input transforms a standard logic gate (see Figure 2(a)). We call this 
new gate a Memristive Perfect Induction (MPI) gate since all possible input combinations (see 
Figure 2(d)) can be programmed using memristors. In this paper, we present and evaluate a pro-
grammable memristive address decoder based on a MPI gate. We show that it exhibits read la-
tency and energy consumption similar to those of a hardwired address decoder. We propose three 
memristive address decoder applications. A fully associative TLB can be implemented with sim-
ilar read delay and energy consumption as one-way associative TLB. Likewise, a fully associa-
tive or many-way associative cache can be implemented incurring read delay and energy close to 
that of a direct-mapped cache. Third, a memristive address decoder enables virtually addressable 
main memory.  

This work makes the following contributions: 

• An MPI gate, inputs of which can be programmed to be direct or inverted, enabling all 
possible combinations of inputs  

Leonid Yavits, Roman 
Kaplan, and Ran Ginosar 
Technion – Israel Institute of 
Technology  

32
IEEE Micro Published by the IEEE Computer Society

0272-1732/18/$33.00 ©2018 IEEESeptember/October 2018



  

 IEEE MICRO 

• A programmable memristive address decoder, which enables associative access at tim-
ing and energy costs close to those of a constantly addressed memory 

 

Figure 1. (Left) Block, row, and column address decoding in RAM. (Right) Example of a hardwired 
address decoder optimized for speed. 

 

Figure 2. (a) Two-input MPI gate, (b) example of write, (c) examples of read with match and 
mismatch, (d) logic combinations enabled by memristors, and (e) programmable memristive 
address decoder. 

MEMRISTIVE ADDRESS DECODER 
A conventional address decoder is depicted in Figure 1. Typically, address decoding is decom-
posed into block address decoding, row address decoding, and column selection (see the left im-
age in Figure 1). The block address decoder usually decodes the higher bits of an address, 
selecting a memory block. The row address decoder selects a memory row in each memory 
block, and the column selector chooses the memory columns in each memory block. 

An address decoder can be implemented in a number of ways. For example, it can be designed as 
a series of AND tree segments (see the right image in Figure 1). This implementation is faster 
but occupies more silicon area than resource-sharing solutions, and it might be limited by 
memory pitch requirements. While random logic decoders are typically used in block address 
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decoding, other types of address-decoding schemes can be implemented in row or column ad-
dress decoding, especially in dense nonvolatile memory.1 For example, row address decoders are 
often implemented using dynamic NAND decoders.2 

Conventional address decoders are hardwired. A constant address pattern is hardcoded in each 
address row by connecting each input of the decoder to either an address bit or inverted address 
bit, respectively. For example, all inputs of the first address row, associated with address 
“00…0,” are hardwired to inverted address bits ~An-1, ~An-2, …, ~A0. All inputs of the last ad-
dress row, associated with address “11…1,” are hardwired to address bits An-1, An-2, …, A0. 

Memristors are two-terminal devices, and their resistance changes by changing the direction of 
the current through them. That resistance is bounded by a minimum resistance RON (low resistive 
state, logic “1”) and a maximum resistance ROFF (high resistive state, logic “0”). 

While a variety of resistive elements exist, one that seems well-suited for the address-decoder 
design is a memristor. It has an off/on ratio of up to 1011, endurance of up to 1012, and switching 
speed of 100 ps to 1 ns.3 

Figure 2(a) presents the concept of an MPI gate. It is formed by adding a pair of memristors to 
each input of a conventional NAND gate, where the first memristor connects a direct input bit to 
both NMOS and PMOS gates, while the second memristor connects an inverted input bit to both 
NMOS and PMOS gates. Two separate NMOS transistors (PE1 and PE2) are added to program 
those memristors. Figure 2(d) shows all possible logic combinations of an MPI gate. 

When an MPI gate is used in an address decoder (see Figure 2(e)), one of the memristors should 
be programmed to RON, while the second (complementary) memristor should be programmed to 
ROFF. If the memristor connected to the input bit is RON (and the other one is ROFF), the gate is 
controlled by the direct input. Alternatively, if the other element is RON, the gate is controlled by 
the inverted input. The former is considered address bit “1,” and the latter is address bit “0.” 

Memristors enable programming (writing) address alongside data block (which is written into a 
memory row, while the address is written into the associated row of address decoder). To write 
an address into a memristive decoder row, the PE1 and PE2 (see Figure 2(a)) are asserted, con-
necting the second terminals of the memristors to the ground. Address write occurs in two steps 
(see Figure 2(b)). In the first step (top of Figure 2(b)), address bit “1” is written into the applica-
ble bits of the address row. A proper positive voltage level VON is applied only to those inputs in 
which an address bit “1” is written, as well as to those inverted inputs in which an address bit “0” 
is written, while the rest of inputs and inverted inputs are kept disconnected (hi-Z). In the second 
step (bottom of Figure 2(b)), address bit “0” is written into the remaining bits of the address row. 
A proper negative voltage level VOFF is applied only to those inputs in which an address bit “0” 
is written, as well as to those inverted inputs in which an address bit “1” is written, while the rest 
of inputs and inverted inputs are kept disconnected. To enable the ternary implementation, a 
“don’t care” state can be encoded by programming both memristors to ROFF (not shown). 

During data read (see Figure 2(c)), a pair of memristors functions as a XNOR. If an address bit 
matches the memristor value (“1” and RON or “0” and ROFF, as shown in the top of Figure 2(c)), 
logic “1” is asserted to the gates of the relevant NMOS-PMOS pair of the NAND gate of Figure 
2(a). Otherwise, XNOR outputs logic “0,” as shown in the bottom of Figure 2(c). Only the ad-
dress row in which the address pattern programmed into memristors match the address pattern 
placed on the address decoder input generates select signal. Clearly, at most one address row 
should be programmed with a given address. If no matching address is found, a “no match” is 
signaled (generated, for example, by wired-ORing of all address rows, not shown in Figure 2). 
Such a “no match” signal can be used to generate cache miss or page fault.  

This read operation is functionally identical to a search in a CAM. In other words, the program-
mable memristive address decoder functions as CAM, allowing associative access to the 
memory array. With the memristive address decoder, memory addresses no longer need to be 
consecutive to enable efficient memory utilization, unlike in hardwired address decoders. Data 
originated by different applications with sparse addresses and random size memory allocations 
can be written continuously in physical memory. 
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EVALUATION 
A two-input MPI gate was designed using the 28-nm CMOS High-k Metal Gate library from 
Global Foundries and SPICE-simulated using the TEAM model,4 obtaining the timing and en-
ergy figures that are presented below. To compare the memristive address decoder to a hard-
wired CMOS one, we synthesized two 8-bit address decoders (hardwired and memristive-
programmable ones) using the Synopsys Design Compiler with the 45-nm FreePDK open cell 
library and scaled the area and power figures to 28 nm to incorporate the MPI gate figures ob-
tained by SPICE. The synthesis was optimized for timing. The comparison table in Figure 3(c) 
summarizes the area, power, and timing of the memristive-programmable and hardwired CMOS 
decoders. 

 

Figure 3. (a) Layout example of a two-input standard NAND gate, (b) layout example of a two-input 
MPI gate, and (c) comparison of memristive and hardwired CMOS address decoders. 

Silicon Area 
A two-input MPI gate adds two NMOS transistors and four memristors to a regular NAND gate 
(Figure 2(a)). Memristors are created as vias between two metal layers and can at least partially 
be placed above CMOS logic. Figures 3(a) and 3(b) show the layout of a regular NAND and an 
MPI gate, respectively, presented in a standard cell row placement fashion. The MPI gate occu-
pies almost twice the area of a regular NAND. However, the overall area overhead of the 
memristive address decoder is 19.1 percent (see Figure 3(c)). 

Timing 
Read access through the memristive address decoder is only slightly longer than a read through a 
hardwired address decoder. A small overhead of less than 1 ps, or 2.5 percent (see Figure 3(c)), 
is due to the input signal propagation through a memristor and the drain of the PE1/2 transistor, as 
compared with propagation over wire.    

Memory write is preceded by the address lookup. If the address exists (programmed into the ad-
dress decoder), the data is written into that memory row. Otherwise, the new address is pro-
grammed into an available address row of the address decoder, simultaneously with writing the 
data in the same row of the memory array, to reduce the write latency. Programming delay could 
be up to 1 ns depending on the exact type of memristor.3 This could substantially increase the 
write latency relative to hardwired address decoded memory. However, for most potential appli-
cations of the memristive address decoder, writes are quite infrequent compared to reads. Moreo-
ver, such increased write latency could be mitigated by dividing the memory into separate 
modules. If a write is followed by a read but they address different modules, then read and write 
can be executed in parallel. Another mechanism of the write latency mitigation is a write buffer. 
It uses a simple queuing mechanism to write data to memory during its free cycles. If a read 
comes before the data is written in memory, it is read from the write buffer instead. 
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Energy Consumption 
Read dynamic energy consumption remains fairly close to that of a hardwired address decoder. 
The read energy overhead is between 0.05 and 0.1 fJ per gate, which translates to 10.1-percent 
overhead for the memristive address decoder (see Figure 3(c)). Write dynamic energy may also 
include the memristor programming energy, which may reach 1 pJ for memristors.3  

Static power is consumed by current leaking through the memristor pairs and the programming 
transistors PE1 and PE2. A typical ROFF for memristors embedded in digital logic is in 109Ω 
range.3 For an 8-bit address decoder, the leakage through additional hardware amounts to a static 
power consumption overhead of 2.62 μW, which leads to the total memristive address decoder 
power-consumption overhead of 20 percent (see Figure 3(c)).     

Endurance 
Endurance (namely, the number of times the memristor may be programmed until it stops func-
tioning correctly) could limit the usage of the programmable memristive address decoder. The 
endurance of memristors is probably limited to 1012 times.3 To mitigate such endurance, the fre-
quency of write to each memory address must be low.  

The probability of a write to a certain memory address equals the probability of a memory write 
times the probability of a specific entry to be selected; in the case of uniform memory, utilization 

equals 
1

  number of entries
. Given the typical size of L2 TLB or L2/L3 cache and typical write 

frequency in such devices, such probability can be quite low; for a memory structure with the 
memristive address decoder (with endurance of 1012) to perform for 10 years at 1 GHz, the aver-

age frequency of write to each address should be ~ 1
315,000  cycles-1, so as not to exceed 1012 

writes. For a 4-Mbyte L2 cache with the line size of 64 bytes and 4 Mbytes/64 bytes = 8,192 en-

tries (yielding the probability of a certain address entry selection of 1
8,192 ), assuming the frac-

tion of memory access instructions is 20 percent and the L1 miss rate is 10 percent (yielding the 

L2 write probability of 1
200 ), this condition is safely met: 

1 1 1
200 8,192 315,000× < .  

If a memory structure has only a few entries (for example, some L1 
DTLBs or L2 DTLBs with a 1-Gbyte page size), a contemporary 
memristor (with 1012 endurance) might not be a suitable building 
block. Such small memory structures, however, are set to benefit very 
little from the memristive address decoder anyway, since making them 
fully associative using conventional approaches (comparators) is quite 
cost-effective. 

Effects of Process Variation 
There are a number of device parameters potentially impacting the 
functionality and timing of the memristive address decoder, which can 
be affected by process variation. Such parameters include the ROFF to 
RON ratio, which affects the behavior of a voltage divider at the ad-
dress decoder input; ROFF, which affects the static power; and memris-
tor programming time, which affects memory write access timing. 
According to recent findings,5 the worst-case ROFF-to-RON ratio swing 
due to process variation is typically ±13 percent. The worst-case static 
power swing is ±6.8 percent. The worst-case program time and energy 
rise are 8.7 percent and 9 percent, respectively, due to voltage varia-
tion and 17.8 percent and 12 percent, respectively, due to process vari-
ation. The worst-case endurance drop is 9 percent due to voltage and 

While process and 

voltage variation do 

affect the timing 

and energy 

consumption of a 

memristive address 

decoder, its 

functionality 

remains quite 

process variation-

tolerant. 
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7.5 percent due to process variation, respectively. According to our simulations, while process 
and voltage variation do affect the timing and energy consumption of a memristive address de-
coder, as well as its endurance, its functionality remains quite process variation-tolerant.     

APPLICATIONS 
In this section, we suggest three potential applications of the memristive address decoder. 

Translation Lookaside Buffer (TLB) 
The hit ratio of TLB is important since an L2 TLB miss may result in a costly page walk, espe-
cially in a virtual-machine environment. The obvious way of improving the hit ratio is increasing 
the associativity of the TLB. However, associativity incurs larger silicon area, higher complex-
ity, longer access delay, and higher energy consumption. 

We propose replacing the TLB CMOS CAM with a programmable memristive address decoder, 
which provides an “affordable” full associativity. The concept of such a TLB is presented in Fig-
ure 4(a).   

 

Figure 4. (a) Fully associative TLB, (b) many-way associative cache, and (c) virtually addressable 
memory concept. 

Read access delay of a fully associative TLB using a memristive ad-
dress decoder is similar to that of a one-way associative TLB, which is 
shorter than the access delay of a four-way or eight-way associative 
CMOS TLB. Read energy consumption of a fully associative TLB us-
ing a memristive address decoder is also similar to that of a one-way 
associative TLB. Writing energy of the memristive address decoder is 
higher than that of the hardwired TLB due to the need to program 
memristors. However, low write frequency in TLBs (around 1,000 or 
fewer writes per million instructions) is typical for many workloads.6 
In that case, the added energy required for programming the memris-
tor may be negligible. 

In summary, the memristive address decoder converts a one-way asso-
ciative TLB into a fully associative TLB, improving hit ratio and re-
ducing or eliminating page walks. The read latency and energy of such 
a fully associative TLB are very similar to those of a one-way associa-
tive TLB. The write energy of such a TLB is higher; however, since 
write is typically infrequent in TLBs, the impact on overall energy 
consumption may be minor. 

The memristive 

address decoder 

converts a one-way 

associative TLB into 

a fully associative 

TLB, improving hit 

ratio and reducing 

or eliminating page 

walks. 
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Cache Memory 
A fully associative cache generally delivers a higher hit ratio that a direct-mapped one. The 
memristive address decoder enables a fully associative cache with similar lookup time and en-
ergy as a direct-mapped cache that uses a hardwired address decoder. The silicon cost of a fully 
associative cache using the memristive address decoder is likely to be slightly higher than that of 
a direct-mapped cache, since memristive decoders are larger than hardwired ones.  

Caches are usually too large to be designed as a single memory array. They are typically parti-
tioned into a number of separate memory blocks, with the higher bits of address selecting the 
block and the lower bits selecting the memory row within the bank. There are two design possi-
bilities. The first is to make both the block address and the row address decoders memristive-
programmable, thus creating a fully associative cache similar to the fully associative TLB in Fig-
ure 4(a). Another (more silicon area-efficient) possibility is to make programmable only the row 
address decoder inside the memory block. This way, we create a many-way set associative cache 
in which each memory row of a memory block is a way and each memory block is a set. This 
many-way set associative cache concept is presented in Figure 4(b). A large number of ways is 
possible—for example, 256 or 512. The hit ratio of such many-way set 
associative caches is likely to be similar to that of a fully associative 
cache.  

Read (lookup) timing and dynamic energy of a many-way associative 
cache are similar to those of a direct-mapped cache. The only differ-
ence is due to the discrepancy in the number of index bits in a direct-
mapped cache versus the number of tag bits in the many-way set asso-
ciative cache, which affects the number of NAND gates in, and hence 
the propagation delay of, the memristive row decoder. Cache replace-
ment could be somewhat costly energy-wise, since per-cell program-
ming energy of a memristor could reach 1 pJ. 

In summary, the memristive address decoder converts a direct-mapped 
cache into a fully associative one. The lookup latency and dynamic 
energy of such a fully associative cache are similar to those of a di-
rect-mapped cache. The write energy of such a cache is higher. How-
ever, as we move further in the cache hierarchy, the miss rate drops, 
and with it drops the frequency of write. Therefore, the impact of pro-
gramming the memristors at each write on the overall energy con-
sumption should not be critical, especially in higher-level caches. 

Virtually Addressable Memory 
Virtual memory decouples a software application’s view of its 
memory resources from their physical layout. This decoupling enables the operating system to 
eliminate memory fragmentation, as well as to improve performance and memory utilization. 
This is possible by managing physical memory resources while providing applications with a 
view of a contiguous address space that is isolated from all other applications. Virtual-to-physi-
cal address mapping (translation) often results in performance degradation, especially in virtual 
environments.7 

Introducing the memristive address decoder to the main memory may enable the elimination of 
physical addressing altogether. In a write access, the virtual addresses—possibly extended by the 
application’s ID (see Figure 4(c))—are transferred to the memory along with the data and are 
programmed into the memristive address decoder. Such virtual addresses, no matter how sparse 
they are and regardless of how much virtual space is allocated by each application, are pro-
grammed continuously into the physical memory so that they occupy only as much space as is 
actually required, allowing for efficient memory utilization.  

The delay and energy impact of programming memristors can be mitigated by lower write fre-
quency (which could be the case if most memory accesses hit in the cache and there is no write-
through). Data is read using the virtual rather than physical address (which no longer exists). An 
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address is associatively looked up in the address decoder, and a matching row is selected. Alt-
hough functionally equivalent to a search in content-addressable memory, the read is very simi-
lar in terms of access delay to a read using a hardwired address-decoded memory. If an address 
that is not programmed in the memristive address decoder is accessed, the “no match” signal is 
generated, signaling a page fault to the operating system. 

RELATED WORK 
Resistive element-based logic gates and combinational circuits have been introduced in prior 
work. Borghetti et al. introduced a memristor-based imply gate.8 James et al. developed a 
memristor-based universal gate.9 Gao et al. proposed a programmable CMOS/memristor thresh-
old logic gate.10 Zhao et al. designed an STT-MRAM and memristor-based nonvolatile full ad-
der.11 The purpose of our work is to extend the functionality of existing logic designs rather than 
replacing CMOS logic with a memristor-based one.  

Resistive NOR CAM technologies have also been explored, such as memristor-based12-14 and 
STT-MRAM-based15,16 CAM. Our design bears similarity with resistive NAND CAM;2 how-
ever, it extends its functionality beyond the NAND address decoder into general logic design.    

A CMOS-based programmable address decoder to support a variable-width RAM (VaWiRAM) 
was introduced by L.K. John.17 In contrast, our design combines memristors with CMOS logic to 
enable fully associative access.   

CONCLUSION 
We propose a programmable memristive address decoder in which the 
address patterns are programmed rather than hardwired. It allows per-
bit comparing of the input address with the programmed address pat-
tern, effectively turning the address decoder into a CAM. At the core 
of the memristive address decoder is a new MPI gate, which enables 
programming of any input combination using memristors.  

The read latency and energy consumption of the memristive address 
decoder are similar to those of a hardwired decoder. Its silicon area 
overhead is limited. Thus, the memristive address decoder enables 
fully associative memory structures at a price close to that of direct-
mapped ones.  

We discuss potential applications of the memristive address decoder. 
One such application is a fully associative TLB at similar silicon area, 
read delay, and energy consumption as a one-way associative TLB. 
Another application is a many-way associative cache with read access 
timing similar to that of a direct-mapped cache. Introducing the pro-
grammable memristive address decoder to main memory may poten-
tially enable elimination of physical addresses and virtually addressable memory. 
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