

ReCAM In-Storage Implementation of K-Means
R. Kaplan, L. Yavits and R. Ginosar

With the approaching end of Moore’s law, non-von Neumann
computing paradigms have gained interest in both academia and
industry. One example is associative processing based on resis-
tive content addressable memory (ReCAM). Resistive materials
are used to build a CAM bit-cell, resulting in very small cell area,
which enables ReCAM application in storage.

This work presents a novel ReCAM based storage architecture
with processing-in-storage (PRinS). ReCAM combines nonvola-
tile data storage and massively parallel processing capabilities,
which we demonstrate by implementing k-means clustering, a
key machine learning algorithm. K-means groups data samples
into disjointed sets so that samples in each set have features closer
to each other than to data items in other clusters (Fig 3(a)).

Resistive memories store information by modulating the re-
sistance of nanoscale storage elements. They are nonvolatile, free
of leakage power, and emerge as long-term potential alternatives
to charge-based memories, including NAND flash. Fig. 1(a)
shows the ReCAM crossbar. A bitcell, shown in Fig. 1(b), consists
of two transistors and two resistive elements. The KEY register
contains a data word to be written or compared against. The
MASK register defines the active columns for compare, write and
read operations, enabling bit selectivity. The TAG register (Fig.
1(c)) marks the rows that are matched by the compare operation
and may be affected by a parallel write. The Reduction Tree is an
adder tree, enabling quick parallel accumulation of TAG bits and
efficient reduction of a vector into a scalar.

KEY
MASK

Bit

(b)

Match /

Word Line

Match /

Word Line

Match /

Word Line

TAG

TAG

(c)

MUX

Write

TAG from prev. chip

To next TAG

Shift select
PrechML

TAG to next chip

SA

(a)

Bit

R
ed

u
ct

io
n

 T
re

e

RT

(d)

TAG
Latch

Register
File

ReCAM Data Buffer

Instruction
Memory

ALU

RT

(e)

Fig. 1. (a) Single ReCAM crossbar IC. (b) 2T2R ReCAM bitcell (c) TAG logic (d)

Daisy-chained ICs (e) Reduction tree and microcontroller

Conceptually, the ReCAM comprises hundreds of millions of
rows, each serving as a computational unit. Due to power per die
restrictions, the entire array may be divided into multiple smaller
ICs, as in Fig. 1(d). The ReCAM storage uses a microcontroller
(Fig. 1(e)) which issues instructions, sets the KEY and MASK reg-
isters, handles control sequences and executes read requests. In
addition, the microcontroller contains the ReCAM buffer, which
stores the reduction tree outputs.

ReCAM is a non-von Neumann PRinS accelerator. Any com-
putational expression can be efficiently implemented on the
ReCAM using line-by-line execution of the truth table of the ex-
pression. Each argument of the expression is matched with the
contents of the entire CAM, the matching rows are tagged, and
the corresponding expression values are written into the desig-
nated fields of the tagged memory rows. For an 𝑚-bit argument
𝑥, any 𝑓(𝑥) has 2𝑚 possible values, therefore the associative com-
puting operation incurs 𝑂(2𝑚) cycles, regardless of the data set
size.

More efficiently, arithmetic operations can be performed on
ReCAM in a word-parallel, bit-serial manner, reducing compute
time from 𝑂(2𝑚) to 𝑂(𝑚). For instance, vector addition may be
performed as follows. Suppose that two 𝑚 bit columns hold vec-

tors A and B. The sum of A+B is written onto another 𝑚 bit col-
umn S (Fig 2(a)). A one-bit column C holds the carry bit. The ad-
dition is carried out in 𝑚 single-bit addition parallel steps.

KEY

T
A
G



MASK

Am-1...A0Bm-1...B0Sm-1...S0C

(a) (b)



Fig 2. Vector Addition in ReCAM: (a) Memory Mapping; (b) Full Adder Truth Table.

The single-bit addition is carried out in a series of passes,
where in each pass one entry of the truth table (a three bit input
pattern, Fig 2(b)) is matched against the contents of the
𝑎[∗]𝑖 , 𝑏[∗]𝑖 , 𝑐[∗] bit columns and the matching rows are tagged; the
logic result (two-bit output of the truth table as listed in Fig 2(b))
is written into 𝑠𝑖 and 𝑐 bits of all tagged rows. During that opera-
tion, all but three input bit columns and two output bit columns
of the associative array are masked out in each pass. Overall, eight
passes of one compare and one write operation are performed to
complete a single-bit addition.

 Init {

X → x field in ReCAM;

c→ x // Initialize each c ∈ C with an x picked randomly from X.
 }

 Main {

for i=1 to t {
// Assignment
for j=1 to k { // The assignment loop is performed in parallel

//over all samples.

dj = (x – cj)
2 // This step takes O(m)+O(m2) cycles:

// subtract a const takes 8m cycles;
// square takes 16m2 cycles;

if dj <dmin { // copy takes 2m cycles.
dmin ← dj
#cluster ← j

}
}

 // Update means

 for j=1 to k { // This is done in parallel for all samples x ∈ X.
Reduce: (dj) // Reduction tree: log2(N)+m+O(1) cycles

Reduce: (x) // for all x assigned to the jth cluster.
Calculate new cj // Performed by the microcontroller.

 }
}

 }
Fig 3. (a) Clustering using k-means, (b) Pseudocode

K-means algorithm pseudocode is presented in Fig 3(b). We
simulate k-means on the ReCAM using the cycle-accurate associ-
ative processor simulator, employing ReCAM performance fig-
ures obtained by SPICE simulations.

To evaluate the efficiency of k-means implementation, we cal-
culate the 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝑁 ∙ 𝑚 ∙ 𝐷 𝑟𝑢𝑛𝑡𝑖𝑚𝑒⁄ , where 𝑁 is the num-
ber of samples (106), 𝑚 is the sample bit width (32), and 𝐷 is the
dimensionality of each sample (1). The simulated ReCAM
throughput, along several throughput figures reported by vari-
ous GPU as well as FPGA-based hardware k-means accelerators
is presented in the following table.

Solution ReCAM GPU FPGA1 FPGA2 FPGA3 FPGA4 FPGA5

Throughput 228 0.6 28.7 7.3 5.3 1.6 0.55

ReCAM PrinS k-means implementation may achieve on aver-
age 7.5× higher throughput compared with several FPGA based
hardware accelerators. It may outperform the high-end GPU im-
plementation by a factor of 377×.

The ReCAM architecture, capable of general purpose associa-
tive processing, can also be applied to other challenging prob-
lems, such as various machine learning and graph processing al-
gorithms.

